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Abstract

Information disclosure usually affects the decision-making process of both buyers and sellers

when the product quality is uncertain, with its ultimate consequence being hard to predict. The

phenomenon is particularly evident in the natural resource exploration industry, where the true

mineral recovery potential is seldomly known. This research studies the effect of production

information disclosure on shale gas operators’ lease location choices. Using a novel dataset

from the Marcellus Shale, this article finds that the disclosure of production information makes

shale gas operators lease more productive parcels despite higher cost, leading to a more efficient

resource allocation. A theoretical model is then proposed to explain the learning process of

the firms. While the finding of the article justifies the cost of collecting and distributing the

production information by the regulating agency, it also shows that centralized information

disclosure facilitates learning among firms, creating room for potential strategic behaviors in the

long run.
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I Introduction

Information disclosure usually affects the decision-making process of both buyers and sellers when

the product quality is uncertain, with its ultimate consequence being hard to predict. In the natural

resource exploration industry, for example, production information provides valuable knowledge for

firms and mineral rights owners to infer the distribution of high-quality reserves. The resulting

impact of the disclosure of such information on the firms’ decisions as to where to explore and on

the costs of obtaining relevant mineral rights is subject to the bargaining process between the firms

and the mineral rights owners, which is not clear before it is empirically investigated. This research

seeks to understand the effect of production information disclosure on shale gas operators’ lease

location choices, using the case of the Marcellus Shale. Since November 2010, the Pennsylvania

government has been publishing the Marcellus Shale’s production data on its website, providing

information about reserve quality distribution to shale gas firms and landowners. Using a novel

dataset of lease records and production quantities that has not been used in previous studies, this

article finds that the disclosure of production information makes shale gas operators lease more

productive parcels of land despite higher costs, leading to a more efficient resource allocation. A

theoretical model is then proposed to reflect the tradeoff faced by the shale gas firms between

greater output potentials and higher leasing costs. While the finding of the article justifies the cost

of collecting and distributing the production information by the regulating agency, it also shows

that centralized information disclosure facilitates learning among firms, creating room for potential

strategic behaviors in the long run.

The prosperity of the shale gas industry has transformed the United States into a natural gas net

exporter in the past decade. Among the major shale gas deposits in the United States, the Marcellus

Shale is the largest, accounting for more than one-third of the country’s shale gas production.

Although the geological property of the Marcellus Shale is well understood today, estimates of

its recoverable natural gas reserve quantity varied significantly over the past 20 years. In 2002,

well before the Marcellus Shale was developed, the United States Geological Survey estimated that

the Marcellus Shale contained 1.9 trillion cubic feet technically recoverable natural gas1. In the

2011’s Annual Energy Outlook published by the United States Energy Information Administration,

the estimate jumped remarkably to 410 trillion cubic feet2. One year later, the number was cut

by more than one half to 141 trillion cubic feet in the 2012’s Annual Energy Outlook3. The

continuous revision reveals that there was considerable uncertainty regarding the output potential

of the Marcellus Shale, which is due to several factors. First, the Marcellus Shale had a relatively

short production history. Its first producing well was drilled in 2004, later than the development of

other major shale gas formations, and only after 2010 had its output begun to proliferate. Second,

1See the National Assessment of Oil and Gas Fact Sheet, published by the USGS in 2002, accessible at https:

//pubs.usgs.gov/fs/fs-009-03/FS-009-03-508.pdf
2See the Annual Energy Outlook 2011, published by EIA, accessible at http://www.pseudology.org/people/..

%5C/gazprom/EnergyOutlook2011.pdf
3See the Annual Energy Outlook 2012, published by EIA, accessible at https://www.eia.gov/outlooks/aeo/

pdf/0383(2012).pdf
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most of Marcellus Shale’s early shale gas wells were drilled at the two productive “sweet spots”

in Northeast and Southwest Pennsylvania, leaving the potentials of other regions hard to detect.

Third, until 2010, there had not been public well-level production data. These facts underline the

necessity of detailed production information for shale gas companies to learn about the geological

features of the Marcellus Shale Formation. On November 1, 2010, the Pennsylvania Department of

Environmental Protection (PADEP) began posting well-specific production data of the Marcellus

Shale on its website. The data was updated semi-annually before 2015 and monthly afterward.

Because the law of Pennsylvania forbids any form of seismic surveys before the shale gas firms

sign lease contracts with the landowners, the production information presumably reshapes people’s

assessment of the shale gas reserve distribution. Regions with higher productivity are likely to be

more attractive to firms. On the other hand, their leasing costs may also be higher as landowners

are now more aware of the value their lands can generate. To what extent the firms’ lease location

choices are affected is an empirical question. The information disclosure hence provides a valuable

opportunity to examine its impact on the mineral rights market.

Information sharing is a highly debated topic and is a feature of many markets and regulatory

structures. Existing literature suggests a variety of models to inform the impacts of information

sharing, with its consequences ranging from improving efficiency to facilitating collusion. It remains

an empirical question as to how information disclosure affects market outcomes in a specific industry.

To the extent that innovation and discovery are concerned, the shale gas exploration industry is a

good example to study such impacts as the input and output can be easily described and measured.

The current research addresses this question by following the dual approach of first conducting an

empirical investigation into the role of information in shale gas drilling using the lease and production

data from the Marcellus Shale and then building a theoretical model to explain the findings. The

empirical strategies include a difference-in-difference study of the correlation between the cost and

productivity of leases and an auto-regressive model embedded in a regression discontinuity design

that aims to quantify the impact of the production information disclosure on shale gas operators’

land leasing decisions. The results show that, following the disclosure of the production information,

a 1% increase in productivity at locations that focus on shale gas production leads to an additional

0.0014% increase in royalty rates compared to the locations that focus on traditional natural gas

production, suggesting that the disclosure of the production information makes shale gas operators

target more productive leases. Prior to the disclosure, a 1 acre increase of the leases obtained by

an operator in the past three months leads to a 0.593 acres increase in its current month’s leases

at the same location. Once the production information is available, the number goes up by 0.007

acres to 0.6 acres for each 1% increase in the location’s productivity. The estimation also finds that

every 1% increase in productivity is associated with a 23.591 acres direct increase in an operator’s

the current month’s leases obtained.

The theoretical part of the paper considers a model in which investors sequentially choose

between two locations to make their investments. The two locations differ in their quality, and

higher quality leads to a higher returns. The investors don’t know which location is of higher quality
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and, without other information, conduct Bayesian learning based on their private signals and the

investment history. Each investor chooses the location that gives it the higher expected return after

deducting the investment cost. As the number of investors choosing a particular location grows, the

cost of investing in that location rises. The model does not dig into the mechanism that shapes the

cost but assumes a reduced-form upward-sloping supply curve to reflect the scarcity of resources at

each location. When additional information partially discloses the quality of the two locations, the

investors’ prior beliefs are modified. Analysis of the two-firm example shows that when the new

information correctly adjusts the prior beliefs, the expected number of firms choosing the location

with higher quality goes up. When there are more than two investors, simulations show that the

expected number of investors choosing the location with higher quality increases in the investors’

prior beliefs that the location is of higher quality. Thus when the disclosed information exposes

the locations’ true potentials, the expected number of investors choosing the higher quality location

increases even though doing so becomes more costly, which induces more efficient investments.

Further inspection of the simulation results suggests that the probability that an investor chooses

a location is positively correlated with the fact that it observes a positive signal of that location,

and the correlation first declines and then goes up as the investor’s prior belief that the location is

of higher quality gets larger. These patterns prove to be valid in the empirical analysis using actual

lease and production data.

The finding of the paper highlights the value of information in improving resources allocation

efficiency and has broader policy implications for industries featuring exploration and experimen-

tation. The existing literature on information disclosure typically focuses the interaction between

sellers and consumers. Dranove and Jin (2010) in their survey paper point out that voluntary dis-

closure is incomplete in many industries and provide evidence that disclosure affects both consumer

choices and product quality. Bessen and Maskin (2009) show that when innovation is sequential,

society may be better off if imitation is costless. This article provides empirical evidence showing

that free imitation can improve investment efficiency in certain industries using shale gas explo-

ration as an example. It is worth pointing out that mandatory disclosure is necessary because no

firm has the incentive to release its production data unilaterally. This observation justifies the cost

of collecting and verifying production information by the regulating agency and provides support

to promoting similar centralized information disclosure policies to other industries.

Information externalities have long been documented in studies of oil and gas extraction (Hen-

dricks and Robert H. Porter (1988); Hendricks and Kovenock (1989); Hendricks and Robert H.

Porter (1996)). While this article shows that the disclosure of the shale gas production information

leads to more efficient lease investments, in general, information externalities can have negative

impacts on social welfare due to strategic disclosure. The example of shale gas exploration in

Pennsylvania has a number of features that mitigates this concern. First, the law of Pennsylvania

requires the shale gas firms to report their production data truthfully, eliminating the possibility of

strategic disclosure. Second, the timing of implementing the disclosure policy is exogenous and un-

predictable. The shale gas firms could not foresee the availability of additional information and plan
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accordingly. This is not to say that strategic concerns do not exist in this industry, and free-riding

behaviors can naturally arise in a repeated disclosure setting. An early disclosure would allow the

firms to take more advantage of the information externalities, while on the other hand exacerbate

strategic delays. The study of strategic concerns and optimal timing of disclosure is left for future

research.

The rest of the article is organized as follows: section II discusses the related literature. Section

III reviews the background of the industry. Section IV describes the data. Section V introduces

the empirical model. Section VI presents the estimation results. Section VII provides a theoretical

framework. Section VIII concludes the article.

II Related Literature

This research is mainly related to three strands of literature. The first is the strand of literature that

studies quality disclosure. Early theory papers typically focus on sellers’ incentives to disclose their

product quality (see Akerlof (1970), S. J. Grossman and Hart (1980), Sanford J. Grossman (1981),

Milgrom (1981), Jovanovic (1982)). One condition that is frequently assumed is costless unravel-

ling. When quality disclosure is costly, Sanford J. Grossman (1981) and Jovanovic (1982) show

that mandatory disclosure may reduce social welfare, while Matthews and Postlewaite (1985) and

Shavell (1994) show that compulsory disclosure policies may induce sellers to collect less informa-

tion. In the shale gas industry, the cost for regulators to collect and verify production information is

not negligible. It is therefore worth asking what would otherwise happen to the shale gas operators

had the production information not been disclosed. Dranove and Jin (2010) provide a compre-

hensive review of the theoretical and empirical development of the literature on quality disclosure.

The more recent theory papers cited in the survey relevant to this research include Fishman and

Hagerty (2003) and Board (2009). Fishman and Hagerty (2003) point out that mandatory dis-

closure may prove attractive to consumers when product information is difficult to understand.

Board (2009) shows that under competition between sellers, voluntary disclosure may not be real-

istic, and mandatory disclosure policies are called for to raise consumer surplus. In the shale gas

industry, mineral rights owners usually do not have good knowledge of the exploration and produc-

tion plans of the shale gas operators, and it is hard to find incentives for the shale gas operators to

disclose their production information voluntarily. Should the information be beneficial to mineral

rights owners, mandatory disclosure may be the optimal option. Still, this article differs from the

theoretical quality disclosure literature because it is the shale gas operators, which is the demand

side of the mineral rights market, that are required to disclose their production information. How

does buyer’s disclosure affect the market participants? incentives and decisions will be one of the

contributions made by this article to the existing literature.

A large number of empirical studies of information disclosure are related to this article, among

which a majority of earlier papers are surveyed by Dranove and Jin (2010). Mathios (2000) demon-

strates that many producers of high-fat salad dressing withheld information before the Nutrition
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Labeling and Education Act came into effect. Jin (2005) finds that only half of all health main-

tenance organizations (HMOs) disclosed their quality due to production differentiation concerns.

Their findings show that voluntary quality disclosure is often hampered in practice, and mandatory

disclosure policy is needed when necessary. All available empirical evidence supports vertical sorting

resulting from quality disclosure (Ippolito and Mathios (1990), Hastings and Weinstein (2008), Jin

and Sorensen (2006), and Dafny and Dranove (2008)). However, research by Marshall et al. (2000)

and Dranove and Sfekas (2008) show that quality disclosure may fail to affect demand if ratings are

difficult to understand or only confirm what consumers already know. Thus whether the disclosed

production information affects the decisions of shale gas operators is subject to empirical examina-

tion. Regarding information disclosure’s impact on product quality, different papers give different

answers. Jin and Leslie (2003) find that the requirement for restaurants to post hygiene grade cards

reduced hospitalizations. By contrast, Dranove, Kessler, et al. (2003) find that cardiac surgery

report cards led to selection behaviours by providers. It is, therefore, worth studying the impact of

the production information disclosure on the shale gas industry-wide production outcomes. Some

of the more recent empirical papers related to this research include Luco (2019)’s study of price

disclosure in the retail gasoline market and Guo, Sriram, and Manchanda (2021) that studies the

impact of the transparency law on industry payments to physicians.

The second strand of related literature concerns learning and information externality, especially

in the oil and gas industry. In the seminal papers by Banerjee (1992)and Bikhchandani, Hirsh-

leifer, and Welch (1992), the authors propose sequential Bayesian learning models to study herding

behaviors and informational cascades. The models can be well applied to the current setting to

demonstrate how shale gas operators learn about reserve distributions. In the series of studies of

offshore oil and gas extraction, Hendricks, Robert H. Porter, and Boudreau (1987), Hendricks and

Robert H. Porter (1988), Hendricks and Kovenock (1989), Hendricks, Robert H. Porter, and Wil-

son (1994), Robert H. Porter (1995), Hendricks and Robert H. Porter (1996) and Hendricks, Pinkse,

and Robert H Porter (2003) provide thorough investigations into the role of information in the auc-

tions of offshore oil and gas leases and the exploration of offshore wildcat tracts. The above studies

of information externality can be broadly classified as examples of social learning, which has been

documented in a variety of other industries and is a crucial driving force for technology adoption

and information spillover (Irwin and Klenow (1994), Foster and Rosenzweig (1995), Munshi (2004),

Conley and Udry (2010)). Bolton and Harris (1999), in their study of strategic experiments in a

multi-player setting, show that when information is a public good, both a free-rider problem and

an incentive to experiment in order to induce future experimentation by other players can arise.

Bessen and Maskin (2009) further point out that when innovation is sequential, society may be

better off if imitation is costless. This article follows the literature and studies if social learning

facilitates the shale gas firms to understand the Marcellus Shale’s reserve distribution, which leads

to more efficient investments.

The third strand of literature this article contributes to is the recent progress in industrial

organization about oil and gas extraction. Some of the most representative articles include Kel-
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logg (2014), Covert (2015), Anderson, Kellogg, and Salant (2018), Steck (2018), Bartik et al. (2019),

Hodgson (2019), Compiani, Haile, and Sant’Anna (2020), Fetter et al. (2018), Agerton (2020), and

Herrnstadt, Kellogg, and Lewis (2020). This article will provide a new angle to the above literature

by evaluating the production information disclosure policy, which has not been studied before.

III Industry Background

This section provides the institutional backgrounds of shale gas exploration in the United States

and the Marcellus Shale in particular. Shale gas is a kind of “unconventional natural gas”, a

term used by the industry to denote natural gas trapped in clay shales (shale gas), in coal beds

(coal bed methane), and in dense sandstones with low permeability (tight gas, see Zhiltsov and

Semenov (2017)). The first shale gas well (also the first natural gas well) in the United States

was drilled by William Hart in the shallow shales of Fredonia, New York, in 1821. Due to the

limited extraction technology and the lack of adequate geological knowledge about shale formations,

commercialized shale gas production was negligible before 1980. The natural gas shortage in the

1970s urged the government to launch a series of policies to stimulate the discovery of unconventional

natural gas resources. Among the most prominent ones were incentive pricing, tax credits, and the

Eastern Gas Shales Project, an R&D program targeting the Devonian-age shales in the Eastern

United States. According to Wang and Krupnick (2015), at the start of the gas shales program,

“the industry had a poor understanding of the physical and chemical characteristics of Devonian

shale, and the estimates of recoverable reserves were highly uncertain.” The goal of the program

was to assess the shale gas resource base and to introduce more efficient production technology.

Starting from the 1980s, Mitchell Energy began to develop the Barnett shale in northern Texas

by applying technologies that were still in the early stages, such as massive hydraulic fracturing,

3-D seismic imaging, and horizontal drilling. The promising findings of Mitchell Energy, along with

high natural gas prices in the early 2000s, encouraged the exploration of other shale gas “plays” -

shale formations containing a significant amount of natural gas - including the Fayetteville Shale in

Arkansas, the Haynesville Shale in Louisiana, the Woodford Shale in Oklahoma, and the Marcellus

Shale in Pennsylvania. Figure 1 displays locations of the major shale gas plays in the lower 48

states. The exploitation of the shale plays drove the shale gas output to rapidly expand. The share

of natural gas from shales and tight oil plays as a percentage of the United States’ dry natural gas

production jumped from 10.9% in 2005 to 50.2% in 2015, as shown by Figure 2. The fast growing

shale gas output was accompanied by a drop of natural gas price, from 8.69 dollars per Million Btu

in 2005 to 2.62 dollars per Million Btu in 2015. Cheap natural gas shadowed the development of

the shale gas industry. As firms struggled to make a balance, a series of consolidations followed.

This industry-wide restructuring goes beyond the scope of this article and is not discussed here.

Among the major shale gas plays, the Marcellus Shale has the largest output. The Devonian

Marcellus shale extends throughout most of the Appalachia Basin in the Northeastern United States.

Figure 4 shows a structural map of the Marcellus Formation, which stretches from southern New
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York, across northern and western Pennsylvania, down to West Virginia and eastern Ohio. Its depth

ranges from 5000 feet to 9000 feet. The Eastern Gas Shales Project in the 1970s identified the Mar-

cellus Shale as a potential source of natural gas supply. Yet early exploration yielded no significant

outcomes due to technology limitations (see Zagorski, Wrightstone, and Bowman (2012)). Follow-

ing Mitchell Energy’s success in the Barnett Shale, Range Resources completed its first Marcellus

well in October 2004 in Washington County, Pennsylvania, establishing the production rates high

enough to attract wide industry interest. As more operators joined the exploration process, the

Marcellus Shale quickly became the major driving force of shale gas development, and in Septem-

ber 2012, it surpassed the Haynesville Shale to become the leading producer of both shale gas and

overall natural gas in the United States. As Figure 3 shows, in January 2016, more than one-third

of the shale gas in the United State was produced from the Marcellus Shale, making up 17.3% of

the United States’ natural gas gross withdraws4.

Although the Marcellus Shale spreads across a number of states, over 90% of its output is

produced in Pennsylvania. Two “sweet spots” in Pennsylvania have been identified, which are

Susquehanna County and Bradford County in the northeast, and Washington County and Greene

County in the southwest. This article focuses on the period between 2007 and 2014, a time in which

shale gas production in Pennsylvania boomed and the industry consolidation resulting from cheap

natural gas prices had not yet commenced. Figure 5 plots the daily gross natural gas withdraws

and the daily shale gas production in Pennsylvania from 2007 to 2014. The gross natural gas

productivity increased over twentyfold, from less than 0.5 billion cubic feet per day in 2007 to more

than 11 billion cubic feet per day in 2014, mostly driven by the expansion of the shale gas output.

One contributor to the growth is the prevalence of horizontal drilling. A horizontal well is first drilled

vertically until the drill bit reaches the target shale formation. The drill bit then turns and drills

horizontally through the shale formation for about one mile. Figure 6 illustrates the configurations

of the two types of wells. Compared with vertical wells, horizontal wells are more costly to drill, but

are much more productive and less space consuming. Figure ?? plots the numbers of newly drilled

vertical and horizontal wells in Pennsylvania from 2007 to 2014. Among the wells drilled in 2007,

less than one percent were horizontal. That share jumped to 60% in 2010, and continued growing

to over 90% in 2014. All horizontal wells are devoted to shale gas production, whereas a significant

share of vertical wells still target conventional natural gas. For these reasons, this article focuses

on the natural gas production from horizontal wells.

The law of Pennsylvania requires firms to obtain mineral rights by signing lease contracts with

the landowners, usually local residents, before conducting seismic surveys or drilling natural gas

wells. The lease contracts are publicly viewable in county courthouses. The term of a contract is

typically three to five years. If production meets the minimum requirement, the lease extends to as

long as the production continues. Otherwise the lease expires at the end of the contractual term.

The cost of the lease consists of two components: an up-front payment (bonus) and a share of the

future revenue (royalty). The common range of the royalty rate is 12.5% to 17.5%. If a firm wants

4See the trend and data provided by EIA: https://www.eia.gov/dnav/ng/hist/n9010us2m.htm
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to drill a well, it first needs to apply for a drilling permit from the PADEP. There are two types

of permits. A conventional permit is issued for a well targeting traditional natural gas, and an

unconventional permit is issued for a well targeting shale gas. On November 1, 2010, the PADEP

began posting well-specific production data of the Marcellus shale gas wells on its website. The first

set of data covers the production from July 2009 to June 2010. It documents the owner, location,

production quantity, and the number of producing days of every shale gas well in Pennsylvania.

The production data is updated semi-annually before 2015 and monthly thereafter. Prior to the

disclosure, a shale gas firm could not observe the productivity of the wells drilled by other companies.

The following sections analyze the impact of the production information disclosure on firms’ land

leasing decisions.

IV Data

This research relies on a novel dataset that has not been used in previous studies, which documents

the lease and production information of the Marcellus Shale during 2007-2014. This section describes

the data used in this article along with the necessary steps through which the data is processed for

empirical analysis. The dataset is made up of several components. The first set of data contains

the drilling permits issued by the PADEP from January 2007 to December 2014. The sample is

available on the PADEP’s website. Each observation includes the operator, issuing date, location

(in terms of county and municipality), and type (conventional or unconventional) of a drilling

permit. The data is used to select operators focusing on shale gas exploration. Table ?? shows the

number of unconventional permits received by different operators. There are 390 operators receiving

at least one drilling permit, among which 107 received at least one unconventional drilling permit.

Chesapeake tops the list with 3062 unconventional permits. Four other operators, Range Resources,

SWEPI, EQT Production, and Talisman, acquired more than 1000 unconventional permits each.

Apart from the five operators, there are 22 operators receiving at least 100 unconventional permits,

and another 31 operators receiving at least 10 unconventional permits. The 58 operators combined

received 18157, of 99.13% of the unconventional permits issued by the Pennsylvania DEP during

the sample period. These operators are treated as having a significant presence in the shale gas

exploration field.

The second set of data consists of the lease records. The data is acquired from Enverus (pre-

viously Drillinginfo), an energy consulting firm. It includes all the lease contracts in Pennsylvania

signed between January 2007 and December 2014, which shows the dynamic locations choices of the

shale gas operators and the corresponding costs. Each contract documents the acreage, operator,

location (county and municipality), starting date, royalty rate, and term of a lease. The bonus

variable is not observable as it is kept secret by the operators. To focus on the leases taken for

shale gas extraction, the leases granted to the operators with fewer than 10 unconventional permits

received between January 2007 and December 2014 are dropped out of the sample.

There are two types of lease records. Apart from the original lease contracts, there are lease
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memos, which are simplified versions of contracts in which some information, including the royalty

rate, is concealed. There are duplicated observations of lease contracts and lease memos for a single

plot of land, possibly due to different grantors or subplots. For example, a 20-acre lease may contain

three subplots, A, B, and C. Subplot A is leased on April 1, 2009 from household h1, and its original

contract is observable. Subplot B is leased on April 1, 2009 from household h1 and h2, each with

a lease memo. Subplot C is leased on April 5, 2009 from household h3. Both its original contract

and its lease memo are available. The three subplots generate five observations of lease records.

The acreage of each individual subplot is not known. Instead, all the five observations have the

same acreage value, which is 20 acres. One fact that complicates the matter is that there is not a

variable to identify observations of the same plot of land. The only way to precisely determine that

the April 5’s leases are for subplot C, not for a distinct parcel, is to refer to the plot map included

in the contract, a method impractical to follow when dealing with a large number of observations.

As a compromise, the following procedures are taken to adjust for the possible duplication. First,

observations with the same operator, location (county and municipality), date, acreage, and type

(lease contract or lease memo) are considered to be of the same plot, and duplicated observations

are dropped. This step leaves one original contract for subplot A, one lease memo for subplot B, and

both the original contract and the lease memo for subplot C for the hypothetical example. In the

next step, for each combination of operator, location (county and municipality), date, and acreage,

if there are both the original contract and the lease memo, the lease memo gets dropped. This

step leaves one original contract for subplot A, one original contract for subplot C, and no lease

records for subplot B. In the third step, observations with the same operator, county, and acreage

are grouped and sorted in the ascending order of their dates, and the lags between consecutive

observations are calculated. For each ordered group, an observation is indicated to be of a distinct

lease if one of the following requirements is satisfied: a). its area is smaller than 10 acres; b). it is

the leading observation of the group; c). its area is smaller than 50 acres, and the lag between its

date and the date of the previous observation in the same group is greater than 30 days; d). its area

is larger than 50 acres, and the lag between its date and the date of the previous observation in the

same group is greater than 60 days. The assumptions behind the criteria is the following: if a lease

is smaller than 10 acres, it is obtained with a single contract on a single day; if a lease is larger than

10 acres and smaller than 50 acres, it could be obtained with multiple contracts signed at different

dates, and the lag between any two consecutive dates is less than 30 days; if a lease is larger than

50 acres, the lag between any of its two consecutive contracts is less than 60 days. Each ordered

group contains the leases in the same county but not necessarily in the same municipality because

the subplots of a lease may be in different municipalities. According to this rule, the contracts for

subplots A and C are treated to be of the same plot of land. Finally, the number of contracts for

each lease is counted, and the average acreage of each contract is calculated. For the hypothetical

example, the 20-acre plot is leased in two days, once on April 1, 2009 and the other time on April 5,

2009, each with 10 acres. The result is possibly different from the reality. Nevertheless, it correctly

reflects the timing and structure of the lease. The selected sample contains 90241 lease records.

10



Table ?? shows the numbers, average acreages, average contractual term, and acreage weighted

average royalty rates of the leases granted in each year from 2007 to 2014. The number of granted

leases peaked in 2008 at over 20000, then dropped to fewer than 5000 in 2012, after which it rose

to more than 10000 in 2014. The average area of a lease was around 70 acres in 2007 and fell below

30 acres starting from 2009. The average royalty rate in the last column is weighted by acreages

and kept fluctuating around 15%.

There are 67 counties and 2464 municipalities in Pennsylvania. The selected lease sample in-

volves 28 counties and 675 municipalities, and spans across 96 months from January 2007 to Decem-

ber 2014. For each combination of municipality and month, the acreage-weighted average royalty

rate is used as the expected cost of leases. To accommodate for the pairs of municipality and month

in which there are no lease observations, this article explores the spatial correlation of the royalty

rates. Figure ?? displays the Moran’s I for the municipality level average royalty rate based on dif-

ferent neighborhood defining distances, using the subsample of the original contracts. The Moran’s

I measures the spatial autocorrelation of a variable. It is defined as

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi −X)(Xj −X)∑

i(Xi −X)2
(1)

where N is the number of spatial units, X is the variable of interest, and wij is the element in

the ith row and jth column of the spatial weighting matrix. wij takes value 1 if unit i and unit j

are “neighbors”, and 0 otherwise. Given the spatial weighting matrix, a positive Moran’s I implies

that high values of X tend to cluster with other high values, and low values of X tend to cluster

with other low values. A negative Moran’s I implies that high values of X tend to cluster with low

values of X. If the values of X are randomly distributed, the Moran’s I will be close to 0. In the

royalty rate example, N is the number of municipalities in which royalty rates are observed; X is

the acreage-weighted average royalty rate of a municipality. For each given distance d, wij = 1 if

i 6= j and the distance between municipality i and municipality j is less than or equal to d, and

wij = 0 otherwise. The figure shows that the Moran’s I for the municipality level average royalty

rate is significantly positive when the neighborhood defining distance is between 0 and over 175

miles, suggesting that the royalty rate is highly spatially correlated. Let L denote the set of the 675

municipalities in which there are lease records. To get an approximation of the expected royalty

rate Rl,m for each pair of municipality and month (l,m), l ∈ L and m = 1, 2, . . . , 96, the following

loop is run over a list of neighborhood defining distances and averaging periods. The algorithm

takes a few steps:

• Initialize Rl,m as a missing value, ∀l ∈ L and m = 1, 2, . . . , 96.

• Create the list of neighborhood defining distances D = {0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70}
with the unit of miles. Create the list of averaging periods T = {1, 3, 6} with the unit of

months.

• Outer loop: loop through D in ascending order. For each d ∈ D:
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– Inner loop: loop through T in ascending order. For each t ∈ T :

∗ For each municipality l and month m, calculate the acreage-weighted average royalty

rate rm,tl and the sum of acreages sm,tl using the leases made at municipality l within

the interval [m− t,m+ t]. Denote rm,tl as a missing value if sm,tl = 0.

∗ Define dij to be the distance between municipality i and municipality j. For each

municipality l, define Nl,d to be the set of neighboring municipalities of l such that

n ∈ Nl,d if and only if dnl ≤ d.

∗ Calculate the acreage-weighted average royalty rate R(l, d,m, t) for each municipality

l and month m, using {(rm,tn , sm,tn )|n ∈ Nl,d}. Denote R(l, d,m, t) as a missing value

if sm,tn = 0, ∀n ∈ Nl,d.

∗ Set Rl,m = R(l, d,m, t) if Rl,m is a missing value and R(l, d,m, t) is not.

Another concern with the lease data is that it is not clear whether a lease is granted for con-

ventional wells or unconventional wells. Given that the geological features of conventional natural

gas are well understood, additional information on shale gas productivity is unlikely to shift the

locations where firms drill conventional wells. To analyze the impact of the shale gas production

information disclosure on firms’ land leasing decisions, it is essential to distinguish between the two

types of leases. The permit data is again used to filter the lease records that are made for the

purpose of conventional well drilling. The filtering process takes the following steps: first, for each

pair of operator i and county c, the numbers of conventional and unconventional permits issued

to operator i in county c are counted, which are denoted as nci,c and nuci,c. Their ratio nci,c/n
uc
i,c is

calculated. In the second step, for each operator i, its numbers of conventional and unconventional

permits are counted, which are denoted as nci and nuci , and their ratio nci/n
uc
i is calculated. In

the third step, for a chosen threshold h, which is set to be 1/5, the leases granted to operator

i in county c are dropped if nci,c/n
uc
i,c > h. In the fourth step, if operator i acquired no drilling

permits in county c, its leases in county c are dropped if nci/n
uc
i > h. The reasoning behind the

filtering process is that if nci,c/n
uc
i,c gets too large, the leases granted to operator i in county c will be

contaminated by those intended for conventional well drilling, which can be misleading if used for

empirical analysis. In the cases where neither nci,c nor nuci,c is available, the ratio nci/n
uc
i is used as a

general gauge of the weights operator i attaches to conventional and unconventional drilling. The

method is conservative in the sense that it is possible for the conventional permits to be issued on

the existing leases, whereas the newly acquired leases are used for shale gas production, in which

case the above procedure unnecessarily drops usable observations. The defect, if exists, has at most

limited impacts, given that the filtered sample contains 81207, or 89.99% of the initial observations.

The third set of data keeps track of the shale gas production history in Pennsylvania from July

2009 to June 2014. The data is acquired from the PADEP’s website. It consists of nine production

reports that document the locations (longitude and latitude), configuration types (vertical or hor-

izontal), operators, production quantities, and number of producing days of the shale gas wells in

Pennsylvania. Table ?? shows the time at which the reports are released and the production period
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each report covers. The first report came out in November 2010. It covers the shale gas production

from July 2009 to June 2010. The other reports were released in Februaries and Augusts of the

years from 2011 to 2014, each covering six months of production. Table ?? describes the summary

statistics of the production data. The first two columns are the numbers of active wells in each pro-

duction report, both horizontal and vertical. The number of vertical wells remains relatively stable,

whereas the number of horizontal wells steadily increases, from fewer than 500 in the first report

to more than 4800 in the ninth report. The third and the fourth columns are the mean producing

days of the horizontal and vertical wells in each production report. The horizontal wells are active

for 133 days on average in the second half of 2010. The number grows to 159 days in the second half

of 2012 and remains at about 160 days thereafter. The fifth and the sixth columns are the average

daily production quantities of the two types of wells. The unit is million cubic feet (MMcf.). The

average productivity of the horizontal wells fluctuates between 2.81 MMcf./d in the second half of

2010 and 2.56 MMcf./d in the second half of 2012. In comparison, the highest average productivity

of the vertical wells is 0.28 MMcf./d in the first half of 2014. The last two columns are the standard

deviations of the daily production quantities. The productivity variations of the horizontal wells

are significantly and consistently higher than those of the vertical wells. These statistics show that

there are obvious distinctions in both scale and productivity between horizontal and vertical wells,

leading to potentially different inferences of the shale gas reserve distribution. To avoid possible

confusions, only production of horizontal wells is used for empirical analysis. Figure ?? plots the

Moran’s I for the municipality level horizontal well productivity against different values of neigh-

borhood defining distances, using the ninth production report. The average daily production of

the horizontal wells in each municipality is used as the variable X in Equation 1. The value of

the Moran’s I is significantly positive for a wide range of distances from 0 to near 200 miles, which

implies that shale gas productivity, like royalty rate, is also positively spatially correlated. The fact

highlights the possibility to speculate about the shale gas reserve quality of an unexplored region

based on the productivity of the adjacent areas.

One feature of the horizontal wells is that their productivity declines over time as the inner

pressure of the shale gas formation gets weaker. This is the major reason that the mean productiv-

ity of the horizontal wells fluctuates over time. To get a more precise sense of how the production

information disclosure may affect shale gas productivity, figure ?? plots the frequency histograms

of the horizontal wells’ daily production using the first, the fifth, and the ninth production report.

The daily production is in logarithmic form, measured by thousand cubic feet per day (Mcf./d).

The upper diagram of Figure ?? is the productivity histogram of the horizontal wells in report 1.

The vertical axis measures the number of wells. The lower diagram of Figure ?? is the productivity

histogram of the horizontal wells in report 5, where the wells in the first report are excluded. There-

fore, the lower left diagram solely reflects the productivity of the horizontal wells drilled between

July 2010 and December 2011. Figure ?? is the analogous comparison between the productivity

histogram of the horizontal wells in report 5 and the productivity histogram of the horizontal wells

in report 9, where the wells in report 5 are excluded. Table ?? reports the means and medians of
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the histograms in Figure ??. The mean and median log daily production of the horizontal wells in

report 1 are 7.54 and 7.62. By contrast, the mean and median log daily production of the horizontal

wells drilled between July 2010 and December 2011 are 7.67 and 7.70. The numbers grow further

to 7.93 and 7.96 for the horizontal wells drilled between January 2012 and December 2013. The

finding is consistent with the hypothesis that the shale gas operators benefit from the production

data by choosing the locations with higher potentials.

The gazetteer of Pennsylvania is downloaded from the United States Census Bureau. The

file provides tractable indices to the counties and municipalities in Pennsylvania, along with the

population, land area, the longitude and latitude of each municipality surveyed by the 2010 Census.

A municipality is a subdivision of a county. It is the smallest geographic unit used in the empirical

analyisis. There are three types of municipalities in Pennsylvania: cities, boroughs, and townships.

It is possible for a city and a township or a city and a borough to be in the same county and have

the same name. For these cases, the pair of municipalities are treated as a single unit with their

population sizes and land areas added up. The middle points of the longitudes and latitudes of the

two municipalities are used as the coordinates of the combined unit.

The final piece of data is the natural gas price. The monthly natural gas spot prices at the

Henry Hub are used as as approximations to the wellhead prices in Pennsylvania. Located in

Erath, Louisiana, the Henry Hub is a vital distribution hub of the natural gas pipeline system, and

has been for years a benchmark for the natural gas futures trading in the United States. Its natural

gas spot price is closely correlated with North American wellhead prices. The data spans across

96 months, from January 2007 to December 2014. The highest price occurs in June 2008, at 12.69

dollars per Mcf. The price falls below 10 dollars per Mcf. after July 2008, and declines to its lowest

level in April 2012, at 1.95 dollars per Mcf., after which it slightly bounces to around 4 dollars per

Mcf. Figure ?? plots the monthly natural gas spot prices along with the logarithm of the lease

acreages granted in each month in Pennsylvania from January 2007 to December 2014. The sample

correlation between the two variables is 0.67, suggesting that natural gas price is likely to be one

of the factors that affect firms’ land leasing decisions.

V Empirical Model

This section employs reduced form models to analyze the impact of the production information

on the land leasing decisions of shale gas operators, using the data presented in the last section.

It begins with a series of difference-in-difference type of models to study the correlation between

productivity and the cost of acquiring leases. An auto-regression model embedded in a regres-

sion discontinuity design is then introduced to quantify the impact of the production information

disclosure on the shale gas operators’ land leasing decisions. To motivate the empirical analysis,

Figure ?? plots the acreage-weighted average royalty rate against the average log daily production

of the horizontal wells for each municipality in Pennsylvania where the values of both variables are

observed. The unit of the daily production is thousand cubic feet per day, or Mcf./d. The pro-
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ductivity is calculated using the ninth report, which covers the shale gas production from January

2014 to June 2014. Thus it can be understood as the “true” productivity of a municipality. The

royalties rates of the circular dots are calculated using the leases granted between January 2007 and

October 2010, prior to the information disclosure. The royalties rates of the crosses are calculated

using the post-disclosure leases granted between November 2010 and December 2014. The dashed

and the solid curves are the fitted linear regression lines, with the 95% confidence intervals given by

the shaded regions. The figure implies that royalty rates are more responsive to productivity when

the shale gas production data is publicly available. The intuition behind the comparison is that if

the production data generates additional information about the quality of the shale gas reserves,

locations with higher productivity will attract greater lease investment, leading to higher royalty

rates.

More formally, consider the following regression model:

Royaltyj,t = β0 + β1Prod
9
j + β2Dt + β3(Prod

9
j ×Dt) + εj,t (2)

where t stands for period, which is either “before disclosure” or “post disclosure”, and j stands

for municipality. Royaltyj,t is the average royalty rate of municipality j at period t, weighted by

the lease acreages. Prod9j is the average log daily production (Mcf./d) of municipality j, calcu-

lated using the ninth production report. It is fixed for each municipality. Dt is the information

disclosure indicator variable that is equal to 0 if period t is “before disclosure” and 1 if period t

is “post disclosure”. εj,t is an unobserved error term that is i.i.d. normal across municipalities

and periods. The coefficient β3 captures the impact of the production information disclosure on

the correlation between lease cost and productivity. A positively significant β3 will represent an

informative disclosure.

To see the relationship between productivity and royalty rate on a yearly basis from 2007 to

2014, the following regression is run:

Royaltyj,t = β0 + β1,tProd
1
j + βt + εj,t (3)

where t stands for year, and j stands for municipality. Royaltyj,t is the average royalty rate of

municipality j in year t, weighted by the lease acreages. Prod1j is the average log daily production

(Mcf./d) of municipality j, calculated using the first production report. The coefficient of produc-

tivity β1,t is allowed to be year-specific. βt represents the year fixed effects. εj,t is an unobserved

error term that is assumed to be i.i.d. normal. The purpose of using the first report is to examine

the impact of the initial production data disclosure on the cost of acquiring leases. The hypothesis

is that the coefficient β1,t of year 2010 shall be positively significant if the first production report

generate shocks to the information sets of the shale gas operators, whereas β1,t of the previous fews

years may not be positive or significant.

Finally, the set of municipalities in the sample is divided into sub-groups that are “shale gas

oriented” and “non-shale gas oriented”, based on the number of active horizontal wells. Because
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the disclosed production information is shale gas specific, it generates additional knowledge about

the shale gas reserve distribution only, and should only affect leases taken for shale gas production.

By comparing the correlation between lease cost and productivity across the two sub-samples, the

impact of information disclosure can be identified. Specifically, consider the following regression

model:

Royaltyj,t = β0 + [β1 + β2Sj + β3Dt + β4(Sj ×Dt)]Prod
9
j + εj,t (4)

where t stands for period, which is either “before disclosure” or “post disclosure”, and j stands for

municipality. Royaltyj,t, Prod
9
j , and Dt are defined as before. Sj is the municipality type indicator

variable that takes value 1 if municipality j is classified as shale gas oriented and 0 otherwise. There

are 32 counties in which at least one horizontal well is active from January 2014 to June 2014. The

municipalities in the 12 counties each with more than 50 active horizontal wells are classified as shale

gas oriented. εj,t is assumed to be i.i.d. normal. The coefficient of productivity is allowed to be

different both for different periods and for different groups of municipalities. The critical parameter

in this model is β4, which captures the distinction in the impacts of the production information

disclosure on the locations of leases taken for share gas production and other purposes.

The above models all seek to provide evidence on the production information disclosure’s im-

pacts indirectly by examining the dynamics of the correlation between productivity and the cost of

acquiring leases. The remaining part of the section looks into an auto-regressive model that directly

measures the effects of the disclosure. Let I denote the set of shale gas operators, J denote the

set of municipalities. Let t denote the number of months past January 2007, where t = 1, 2, . . . , 96.

The production information is disclosed at t = 47. For each operator i ∈ I and each municipality

j ∈ J , let ai,j,t be the acreages of the leases granted to operator i in municipality j and month t,

measured by acres. Define

Ot =

i ∈ I
∣∣∣∣∣∣
∑
j∈J

ai,j,t > 0

 (5)

to be the set of operators that are actively taking out leases in month t. Let dj,k denote the distance

in miles between municipalities j and k. For each municipality j ∈ J , define Nj = {k ∈ J |dj,k ≤ 5}
to be the set of its neighboring municipalities. Note that with this definition, j ∈ Nj , i.e., a

municipality is itself one of its neighboring municipalities. The data generating process is assumed

to be the following: in each month t, 1 ≤ t ≤ 96, each operator i ∈ Ot decides ai,j,t, i.e., the acreages

of the leases it shall take in municipality j, for each j ∈ J . For an operator i that is not actively

taking leases, i.e. i /∈ Ot, define ai,j,t = 0 for every municipality j ∈ J . The operators observe the

history of lease taking of all operators in all municipalities {ai,j,τ}i∈I,j∈J ,1≤τ<t, but do not observe

the productivity of the shale gas wells until t = 47. The value of ai,j,t is assumed to be determined

by the following latent variable model:

ai,j,t =

{
a∗i,j,t, if a∗i,j,t > 0

0, otherwise
(6)
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and the latent acreage a∗i,j,t is given by

a∗i,j,t = αi + Si,j,tδ + θlog qj,t +
(
log qj,t × Si,j,t

)
γ +Xi,j,tβ + εi,j,t (7)

where Si,j,t is a vector of signals regarding the quality of the leases at location j, observed by

operator i in month t. log qj,t is the average log daily production of the horizontal wells in the

municipalities in Nj , calculated using the most recent production report available in month t5. The

unit of the horizontal wells’ daily production is thousand cubic feet per day (Mcf./d). Xi,j,t is a

vector of control variables, including natural gas price pt, royalty rate rj,t, population size Popj and

land area Alandj of municipality j, an indicator variable Pubi that takes value one if operator i is

public, and a trend variable t. αi is the operator fixed effect. εi,j,t is an unobserved random term

that is assumed to be i.i.d. normal across operators, municipalities, and months. δ, γ, and β are

coefficient vectors. For notational simplicity, define ai,j,t = 0, ∀i ∈ I, j ∈ J , and t = −3,−2,−1, 0.

The vector of signals Si,j,t include the following variables:

1. Own recent lease acreages ARecenti,j,t : the lease acreages operator i obtains in municipality j in

the past three months, defined by

ARecenti,j,t =
t−1∑

τ=t−3
ai,j,τ (8)

2. Peer’s recent lease acreages ARecent−i,j,t : the lease acreages operators other than i obtain in mu-

nicipality j in the past three months, defined by

ARecent−i,j,t =
t−1∑

τ=t−3

∑
k∈I\{i}

ak,j,τ (9)

3. Accumulated lease acreages AAccumlatedj,t : the accumulated acreages that have been leased in

municipality j up to month t− 4, defined by

AAccumlatedj,t =

t−4∑
τ=−3

∑
i∈I

ai,j,τ (10)

The above model is built upon the assumption that leasing decisions reflect operators’ beliefs

of a location’s output potential and should be correlated over time. The own recent lease acreage

and the peer’s recent lease acreage stand for signals of the shale gas reserve quality. A larger recent

lease acreage indicates that the operator itself or its competitors are more likely to have private

information that lease investment in the municipality is promising. The two types of lease acreages

are separated to distinguish between the effects of signals from different sources. The accumulated

lease acreage represents the lease investment history in the municipality. A larger accumulated lease

5To accommodate zero production, this article uses log(qj,t + 1)
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acreage implies that more operators think positively of the municipality in the past. The average

productivity of the horizontal wells provides a direct measurement of the municipality’s shale gas

reserve quality. The neighboring municipalities are included because there exists significant positive

spatial correlation in shale gas productivity. When t < 47, the productivity signal is not available

and is assumed to be zero for all the municipalities6. For each month t ≥ 47, the latest production

report available in month t is used to calculate the average productivity. The coefficient θ is expected

to be positive if the production information generates new knowledge of the reserve quality. The

coefficients of the interactive terms between the past lease acreages and the average productivity

will also be positive if higher productivity signals leads to stronger autocorrelations between leasing

decisions.

VI Estimation Results

This section presents the estimation results of the empirical models discussed in the last section.

Table ?? reports the coefficient estimates of the model given by (2). The coefficient of productivity

is 0.0037 with a standard error of 0.0011, indicating that before the disclosure of the production

information, a 1% increase in a municipality’s daily production is associated with 0.0037% increase in

absolute value of the municipality’s average royalty rate. The coefficient of the interactive variable

between productivity and disclosure dummy is estimated to be 0.0058 with a standard error of

0.0009. Thus once the production data is publicly available, a 1% increase in a municipality’s daily

production leads to an additional 0.0058% increase of the the municipality’s royalty rate in absolute

value, or 1.57 times higher compared to the prior-disclosure situation. The finding is consistent with

the pattern in Figure ?? and the hypothesis that the production information makes locations with

higher productivity attract significantly more lease investments, leading to more efficient resource

allocation.

For the year-by-year regression model given by (3), the coefficient of productivity in 2007 is

estimated to be -0.0012 with a standard error of 0.0027, which indicates that there is no statisti-

cally significant correlation between royalty rate and productivity in 2007. Figure ?? displays the

coefficient estimates of the interaction between productivity and the year fixed effects. The round

dots connected by the solid line represent the change of productivity’s coefficient estimates in the

corresponding years relative to the 2007’s value. The dashed lines connects the upper and lower

bounds of the 95% confidence intervals for the estimated coefficients. The vertical line stands for

the time of the initial production data disclosure (November 2010). The coefficients of productivity

in 2008 and 2009 are estimated to be higher than the value in 2007, though the increments are not

statistically significant under the 5% significance level. The coefficient of productivity in 2010 is

significantly higher than the 2007 estimate by 0.0088, and the increase jumps to 0.0137 in 2011 with

a standard error of 0.0041. The estimates in 2012, 2013, and 2014 are not significantly different

from the estimate in 2007. The result suggests that in the year following the disclosure of the

6An operator can observe its own production even when t < 47. This information, however, is not available in the
data, and hence is dismissed in the model.
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production information, royalty rates became positively correlated with productivity. The change

in the correlation is significant both statistically and in magnitude. The positive change, however,

does not continue into the years after 2011. One possible explanation to this finding is that the

disclosed production information introduces a shock to the firms’ understanding about the shale

gas reserve distribution, which is completely digested in the following years.

Table ?? reports the coefficient estimates of the model given by (4). The “benchmark” coefficient

of productivity is estimated to be 0.0047 with a standard error of 0.0011. It implies that prior to the

production information disclosure, for municipalities that are not shale gas oriented, royalty rate

is slightly positively correlated with the productivity of horizontal wells, with 1% increase in daily

production leading to 0.0047% absolute increase in royalty rate. The coefficient of municipality

type indicator variable is estimated to be −1.37 × 20−5 with a standard error of 0.0004, which is

not significant either statistically or economically. Thus prior to the information disclosure, there

is no testable difference in terms of the responsiveness of royalty rate to productivity between the

two types of municipalities. The coefficient period indicator variable is estimated to be 0.0009

with a standard error of 0.0006, which is not significant either. It shows that for the group of

municipalities that are not shale gas oriented, the disclosure of the production information has

no significant impact on the choices of lease locations. The coefficient of the interactive variable

between the type indicator and the period indicator is estimated to be 0.0014, with a standard error

of 0.0006. The estimate is positive and statistically significant, suggesting that the disclosure of the

production data generates an additional 0.0014% absolute increase in royalty rate with 1% increase

in productivity for the shale gas oriented municipalities. Although the value is economically small,

it nevertheless accounts for around one third of the marginal contribution of productivity to royalty

rate for municipalities that are not shale gas oriented. This finding is consistent with the intuition

that the production information disclosure only affects land leasing decisions targeting shale gas

production.

The model defined by equations (6) and (7) is estimated using maximum likelihood. Table ??

reports the estimation results. The second and third columns are the coefficient estimates and

standard errors of the baseline model. The coefficient of the operator’s own lease acreage in the

past three months is estimated to be 0.593 with a standard error of 0.007. It implies that, other

things equal, for a one acre increase in the leases granted to an operator in a given municipality in

the past three months, there corresponds to a 0.593 acres increase in the latent lease acreage taken

by the operator in the same municipality in the current month, indicating a strong correlation of

the leasing decisions over time. The coefficient of the peer’s lease acreage in the past three months

is estimated to be -0.003 and is insignificant. The result is somewhat surprising in that it suggests

that operators don’t rely so much on their competitors’ recent land leasing decisions as signals of

the shale gas reserve quality, and, in fact, tend to make opposite choices. The coefficient of the

accumulated lease acreages in the given municipality is estimated to be 0.029 with a standard error

of 0.001. The sign of the coefficient is as expected, though its value is much smaller than that of

the coefficient of the own recent lease acreage, which makes sense as recent leasing decisions carry
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a lot more information concerning an operator’s interest at a certain location. The coefficient of

productivity is estimated to be 23.591 with a standard error of 0.924. It suggests that, conditioning

on the past leasing decisions, a 1% increase in the daily production of the horizontal wells in the

neighboring municipalities leads to a 23.591 acres increase in an operator’s latent lease acreage in

the given municipality. To get a sense of the magnitude of the estimate, the mean value of the

monthly acreage an operator leases in a municipality is 2.15 acres, and the conditional mean given

that the acreage is positive is 144.41 acres. The impact of productivity information on an operator’s

land leasing decision is thus huge. The coefficient of the interaction between productivity and the

own recent lease acreage is estimated to be 0.007 with a standard error of 0.002. It implies that

once the production information is available, a 1% increase in the average productivity generates an

additional 0.007 acre to the latent lease acreages for every one acre increase in the operator’s own

recent lease. An explanation to the finding is that higher productivity leads to higher prior beliefs of

the municipality’s shale gas output potential, which makes the correlation of an operator’s leasing

decision over time also stronger. The coefficient estimate of the interaction between productivity

and the peer’s recent lease acreage is not significant. It reinforces the earlier finding that operators

do not rely on their competitors’ leasing decisions to make their choices. The coefficient of the

interaction between productivity and the accumulated lease acreages is estimated to be -0.001

with a standard error of 0.0001, suggesting that higher productivity decreases the impact of the

accumulated lease acreage on an operator’s land leasing decision, though the magnitude is small.

The coefficient of the royalty rate is estimated to be 631.163 with a standard error of 49.983. It

implies that, other things equal, a 1% absolute increase in the average royalty rate of a municipality

leads to a 6.31 acres increase in an operator’s latent lease acreage. The positive sign of the estimate

clearly reflects that the royalty rate variable is endogenously determined, which will lead to biases

in the estimates of other coefficients. To address this issue, an alternative model is proposed in the

later part of the section. The coefficient of the natural gas price is estimated to be 25.163 with a

standard error of 1.116, consistent with the strong correlation between natural gas price and leased

acreages displayed by Figure ??. The public firm indicator variable’s coefficient is estimated to be

173.033 with a standard error of 16.054, which implies that, compared to private operators, the

latent lease acreage of a public operator is 173.033 acres larger on average. Finally, the coefficient of

the time trend variable is estimated to be -3.904 with a standard error of 0.128, echoing a downward

trend of lease acreages observed in Table ??.

The fourth and fifth columns of the Table ?? present the estimation results of the same model

with the operator fixed effects removed. The coefficient estimates and the standard errors are not

significantly different from those of the baseline model estimation. The last two columns are the

estimation results of a linear model, where the dependent variable is the observed lease acreage ai,j,t

and the independent variables are the same as the baseline model. Compared to the first two models,

the coefficient estimates of the linear model become mush smaller in absolute values, although the

signs of the estimates remain mostly unchanged. One reason that the linear model may not be a

good choice in the current setting is that the dependent variable is by nature non-negative, and
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a large share of the observed dependent variables are zeros. The nonlinear latent variable model

proposed in the last section captures this non-negative feature.

The remaining part of the section discusses a few robustness tests of the estimation results of

the last model. The first test re-performs the estimation based on different window widths. The

purpose is to examine the possibility that the estimates are significant due to noises at the sample’s

tails. Table ?? presents the outcomes of the test. The operator fixed effects are dropped due to the

shrinkage of the sample size. The removal of the operator fixed effects is not of a major concern

given the similarity of the estimation results with and without the fixed effects in the baseline model.

The second and the third columns are the coefficient estimates and the standard errors based on the

full sample from 2007 to 2014, which are the same as the fourth and the fifth column in Table ??.

The next two columns in Table ?? give the estimates using the sample with a narrower window,

with acreage observations from 2007 and 2014 removed. The sixth and the seventh columns are

the estimates based on an even narrower window from 2009 to 2012, and the last two columns are

estimated from the sample consisting only of the observations in 2010 and 2011. The four sets of

estimation generate comparable outcomes, both in terms of the signs and the significance levels

of the coefficient estimates. One exception is the coefficient of the interaction between average

productivity and own recent lease acreage, estimated using the sample from 2008 to 2013, which is

negative and less significant. However, with samples of narrower windows, the coefficient estimates

are positive and significant again, and are greater than the original estimate. Another exception

is the last estimate of the natural gas price’s coefficient, which becomes negative and insignificant.

As the sample’s window turns narrower, the magnitudes of some of the coefficient estimates change

monotonically. For example, the coefficient estimate of own recent lease acreage drops from 0.660

in the first estimation to 0.553 in the last estimation, whereas the coefficient of peer’s recent lease

acreage goes down from -0.015 in the first estimation to -0.139 in the last estimation. The most

notable changes include the coefficient estimate of productivity, from 24.899 in the first estimation

to 12.587 in the last estimation, and the coefficient estimate of royalty rate, from 651.460 in the

first estimation to 3308.702 in the last estimation. As the changes are monotonic and do not flip

the signs of the original estimates, the estimation results are robust.

The second robustness test conducts the same estimation using an artificially created sample.

The sample is constructed by retaining only the acreage observations from 2011 to 2014 in the

original sample, and changing the productivity observations in 2011 and 2012 to zeros. It intends

to examine the virtual effect of the production information on operators’ land leasing decisions had

it been disclosed at the end of 2012. Table ?? presents the estimation results. The operator fixed

effects are not included. The second and third columns are the coefficient estimates and the standard

errors based on the original sample. The fourth and fifth columns are the estimation results based

on the artificial sample. The first major change is that the coefficient estimate of peer’s recent

lease acreage becomes insignificant. The second major change is that the coefficient estimate of

the interaction between average productivity and own recent lease acreage becomes negative and

insignificant. In addition, the coefficient estimate of the natural gas price drops from 24.988 to
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0.737 and becomes insignificant. The estimation results based on the artificial sample contradicts

to the intuition that a higher productivity increases the correlation between an operator’s leasing

decisions overtime. Thus there is not sufficient support that the production information, had it been

disclosed at the end of 2012, introduces shocks to the shale gas operator’s land leasing decisions.

The finding is consistent with the fact that most of the changes in the land leasing patterns ought

to be realized in the year following the real disclosure of the production information.

Finally, to address the endogeneity problem of the royalty rate variable, the following log-linear

model is proposed, where the acreage variables are all transformed to their logarithm forms:7

log ai,j,t = αi + logSi,j,tδ + θlog qj,t +
(
log qj,t × logSi,j,t

)
γ +Xi,j,tβ + εi,j,t (11)

where ai,j,t is the lease acreages taken by operator i in municipality j and month t, logSi,j,t =(
logARecenti,j,t , logARecent−i,j,t , logAAccumlatedj,t

)
stands for the vector of past lease acreages in log forms.

The per capita income of the county where the municipality locates in the same year the lease

is granted is used as an instrument for the royalty rate. The logic is that the per capita income

represents the opportunity cost of the landowner’s bargaining time and is hence correlated with the

cost of acquiring leases. Table ?? reports the estimation results. First note that the coefficient of

royalty rate turns negative when IV is used, which makes sense as the variable stands for the “price”

of leases. The coefficients of own recent acreage, accumulated acreage and productivity remain

positive and significant, whereas the coefficient of peer’s recent acreage now becomes positive and

significant. The coefficients of the interactive variables are all small, and the interaction between

productivity and own recent acreage becomes insignificant. A somewhat surprising result is that

natural gas price now is also insignificant. Compared with the estimation results without IV, apart

from the sign change of the coefficient of royalty rate, another finding is that the coefficient of

productivity is highly underestimated when IV is not used, suggesting an even stronger impact of

the production information on leasing decisions than what is earlier estimated.

VII Theoretical Analysis

This section introduces a simple Bayesian learning model that seeks to explain how additional pro-

duction information helps improve the efficiency of lease investment and justify the empirical findings

presented in the last section. The framework follows the herding model described in Bikhchandani,

Hirshleifer, and Welch (1992) and abstracts from the bargaining problem between operators and

landowners by assuming a reduced-form upward sloping supply function. In the setting elaborated

below, operators perform Bayesian updating about the potential outputs of two locations before

making their lease investment decisions. The additional production information is assumed to af-

fect the firms’ prior beliefs. The model aims to explore the relationship between the production

information and the expected numbers of firms taking leases at each of the two locations.

Assume N operators are sequentially choosing to allocate their lease investment between two

7log(ai,j,t + 1) is used in practice to accommodate the zero acreage cases.
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locations, L1 and L2. Let Q1 and Q2 denote the potential output of the of two locations. Assume

Q1 = QH , Q2 = QL, and QH > QL. The true potentials are unknown to the operators. Instead,

they have identical prior beliefs Pr(Q1 = QH) = Pr(Q2 = QH) = 1/2.

Each operator i, i = 1, 2, . . . , N , chooses one location to invest, possibly due to budget concerns.

Let di,j ∈ {0, 1} denote operator i’s investment decision at Lj , j = 1, 2, where 1 stands for investing

and 0 stands for not investing. Then di,1 + di,2 = 1. For a given order of investment 1, 2, . . . , N ,

let d0,j = 0 for both j = 1, 2, and hi,j = (d0,j , d1,j , d2,j , . . . , di−1,j) be the history of investment

decisions at location Lj prior to operator i. Before investor i makes its investment decision, it

observes hi = (hi,1,hi,2) and a signal si ∈ {1, 2}. It is known to all the operators that Pr(si = j)

= p > 1/2 if Qj = QH , j = 1, 2. Define rj(·) to be the inverse supply function of lease resources at

Lj that relates the royalty rate at Lj with the investment history at Lj . Assume rj(·) is increasing,

rj(0) = 0, and rj(N) ≤ 1, j = 1, 2. Define

|hi,j | ≡
i−1∑
k=0

dk,j , j = 1, 2, i = 1, 2, . . . , N (12)

to be the number of operators that have invested at Lj before operator i. Operator i’s return from

Lj is given by

Ri,j = (1− rj(|hi,j |))Qj (13)

The return is increasing in the potential output and decreasing in the royalty rate. The natural gas

price is normalized to one, and there is assumed to be no fixed investment cost.

Let di = (di,1, di,2) denote operator i’s lease investment decision. Operator i conducts Bayesian

updating whenever possible, and chooses di to maximize its posterior expected return. Let Ji(hi,di)

be the set of signal si so that operator i chooses di given that it observes investment history hi.

Operator i solves the following objective function

max
di

E [Ri,1 +Ri,2|si, Jk(hk,dk), k < i] (14)

Let N1 and N2 denote the expected numbers of firms choosing L1 and L2.

Now assume there exists an additional set of productivity signals q1 and q2, q1 > q2, so that all

the operators’ prior beliefs becomes

Pr(Q1 = QH) = q1/(q1 + q2) (15)

Pr(Q2 = QH) = q2/(q1 + q2) (16)

For the same given order of investment and inverse supply functions r1(·), r2(·), let M1(q1/q2)

and M2(q1/q2) denote the expected numbers of firms choosing L1 and L2 with signals q1 and

q2 available. The question of interest is how M1(q1/q2) and M2(q1/q2) compare with N1 and

N2. If M1(q1/q2) > N1 and M2(q1/q2) < N2 when q1 > q2, the introduction of the productivity

signal improves the efficiency of resource allocation. To begin with, the following example seeks to
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illustrate the intuition of the model by focusing on the special case when N = 2. For simplicity,

assume QH = 1, QL = 0, r1(·) = r2(·) = r(·).
When N = 2, given that the operators have even priors, the first operator always chooses Ls1

because the posterior probability Pr(Qs1 = 1) = p > 1/2. The second operator, observing the first

operator’s choice, is able to infer s1. If s2 6= s1, the second operator again has identical posterior

beliefs Pr(Qs1 = 1) and Pr(Qs2 = 1). Because r(·) is increasing, the second operator will choose

Ls2 . If s2 = s1, the second operator’s posterior belief that Qs1 = 1 becomes

Pr(Qs1 = 1|s1 = s2) =
p2

p2 + (1− p)2
(17)

Let L3−s1 denote the location other than Ls1 . The second operator’s expected return from choosing

each of the two locations, given its posterior beliefs, are

E[R2,s1 |s2 = s1] = (1− r(1))
p2

p2 + (1− p)2
(18)

E[R2,(3−s1)|s2 = s1] =
(1− p)2

p2 + (1− p)2
(19)

When r(1) > 1− (1− p)2/p2, E[R2,(3−s1)|s2 = s1] > E[R2,s1 |s2 = s1]. Hence even if s2 = s1, the

second operator still chooses L3−s1 due to the high royalty cost at Ls1 . It can be seen that given

r(1) > 1−(1−p)2/p2, the two operators always choose different locations. Therefore, N1 = N2 = 1.

Now assume that the two operators observe the productivity signals q1 and q2 with q1 > q2, so

that their priors become Pr(Q1 = 1) = q1/(q1 + q2). If the first operator observes s1 = 1, it will

choose L1 for sure. If it observes s1 = 2, its posterior belief that Q1 = 1 becomes

Pr(Q1 = 1|s1 = 2) =
(1− p)q1

(1− p)q1 + pq2
(20)

Hence when q1/q2 > p/(1 − p), the first operator will choose L1 regardless of its signal. Next, if

s2 = 1, the second operator’s posterior belief that Q1 = 1 becomes

Pr(Q1 = 1|s2 = 1) =
pq1

pq1 + (1− p)q2
(21)

and its expected return from the two locations, given its posterior beliefs, are

E[R2,1|s2 = 1] = (1− r(1))
pq1

pq1 + (1− p)q2
(22)

E[R2,2|s2 = 1] =
(1− p)q2

pq1 + (1− p)q2
(23)

As long as

r(1) < 1− (1− p)q2
pq1

(24)

the second operator will choose L1, and there is a positive probability that both operators will end
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up at L1. Since q1/q2 > p/(1− p), 1− (1−p)q2
pq1

> 1− (1− p)2/p2. By setting

1− (1− p)2/p2 < r(1) < 1− (1− p)q2
pq1

(25)

it happens that M1 > N1 and M2 < N2, so that on average, there will more operators choosing the

location will higher potential, and on average, the royalty rate at L1 will also be higher. Another

thing to note is that when r(1) < 1− (1−p)2/p2, without the productivity signal, there is a positive

probability that both operators will choose L2, which is the most inefficient outcome. On the other

hand, with the productivity signal available, as long as q1/q2 > p/(1− p), at least one operator will

choose L1, and the worst scenario is avoided.

An analytical investigation of the Bayesian updating process becomes less tractable when N > 2

given the existence of the royalty cost functions, and simulation is used to explore the relationship

between the prior beliefs and the expected number of operators choosing each location. Figure ??

displays the simulation results based on different royalty cost functions. The potential output Q1

for location L1 is set to be 1, and the potential output Q2 for location L2 is set to be 0. The common

belief that a signal points to location Lj given Qj = 1 is taken to be 3/5 for both j = 1, 2, and the

number of investing operators N is set to be 50. Given a royalty cost function, a sample of 10,000

experiments are simulated for each prior belief Pr(Q1 = 1). In each experiment, a set of 50 signals

si, i = 1, 2, . . . , 50, are independently drawn. si takes value 1 with probability 3/5 and value 2

with probability 2/5. The operators, not knowing the true potentials of the two locations, conduct

Bayesian learning based on the investment histories and the signals they observe, and choose either

L1 or L2 by solving Equation (14). The number of operators choosing each location is recorded

for every experiment. Figure ?? and Figure ?? plot the mean numbers of operators and the mean

royalty rates at L1 and L2 against different values of the prior belief Pr(Q1 = 1) for the linear

royalty cost function r(x) = x/N , where N = 50. Figure ?? and Figure ?? are the same plots for

the concave royalty cost function r(x) = 1 − 1/(x + 1), while Figure ?? and Figure ?? are based

on the convex royalty cost function r(x) = x2/N2, where N = 50. In all the three sets of plots, the

mean number of operators choosing L−1 is increasing in the prior belief Pr(Q1 = 1), so is the mean

royalty rate at L1. The simulation results show that in a Bayesian learning setting, an informative

productivity signal that correctly adjusts the operators’ prior beliefs improves the efficiency of the

operators’ resource allocation.

The simulation results generate several reduced-form implications that provide justifications for

the earlier empirical findings. One implication is that the correlation between the private signal and

the operator’s location choice changes along with the common prior belief. Let Yi be the indicator

variable of operator i’s location choice, where Yi = 1 if operator i chooses L1 and Yi = 0 if operator

i chooses L2. Let Xi be the indicator variable of operator i’s signal, where Xi = 1 if si = 1 and

Xi = 0 if si = 2. Consider the following probit model of the operator’s location choice as a function

of the operator’s signal:

Y ∗i = β0 + β1Xi + εi (26)
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and

Yi =

{
1, Y ∗i > 0

0, otherwise
(27)

Figure ?? plots the estimation results of β1 in Equation (26) against different values of the prior

belief Pr(Q1 = 1) ranging from 0.1 to 0.98. The coefficient estimate for each prior belief is obtained

using the simulated sample of size 10,000 based on the linear royalty cost function r(x) = x/N ,

where N = 50. The coefficient estimates are positive for all prior beliefs, suggesting that the signal

observed by an operator is predictive of the operator’s location choice. In addition, the coefficient

of the signal variable first decreases along with the prior belief when its value is in the lower range

between 0.1 and 0.2 and then displays a generally increasing pattern when the prior belief becomes

large. The finding suggests that, when prior beliefs are very pessimistic, the disclosure of additional

positive information may diminish the correlation between an operator’s location choice and the

signal it observes. By contrast, when prior beliefs are more optimistic, the disclosure of additional

positive information tends to amplify this correlation.

Another implication of the model is that the correlation between an operator’s location choice

and the investment history it observes also changes along with the prior belief. Let |hi,1| be the

number of operators that has invested at location L1, Yi be the same location choice indicator

variable defined as above. Consider the following probit model:

Y ∗i = β0 + β1|hi,1|+ β2i+ εi (28)

and

Yi =

{
1, Y ∗i > 0

0, otherwise
(29)

Figure ?? plots the coefficient estimates in Equations (28) and (29) against different values of

the prior belief Pr(Q1 = 1), using the same simulation results as before. The royalty cost function

is still set to be linear with r(x) = x/N , where N = 50. Figure ?? plots the estimates of the

coefficient of the number of investors choosing location L1 against prior beliefs ranging from 0.1

to 0.9. The coefficient estimates are positive for all values of the prior belief, suggesting that

an operator’s location choice is positively correlated with the investment history at the location.

An interesting feature is the U-shape of the curve: the coefficient first decreases when the prior

belief is less than 0.4, and stays relatively flat in the range between 0.4 and 0.6, and then begins

to climb up when the prior belief exceeds 0.6. The finding suggests that, when prior beliefs are

pessimistic, additional positive information tends to lower the correlation between an operator’s

location choice and the location’s accumulated investment history. When prior beliefs are in the

intermediate range, the correlation does not change much following the disclosure, and when prior

beliefs are optimistic, additional positive information turns to enhance the correlation. Finally,

Figure ?? plots the estimates for the coefficient of an operator’s position in the queue against its

8For extremely small prior probabilities, possibility exists that no operator chooses location L1, which generates
a problem for the regression analysis.
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prior beliefs. The coefficient estimate is generally decreasing in the prior belief, and changes from

positive to negative when the prior belief increases. The interpretation is that latecomers tend to

avoid promising locations due to higher costs, and this avoidance is magnified by higher prior beliefs

of the location’s output potential.

VIII Conclusion

This article looks into the the classic topic of information disclosure and information sharing in the

context of shale gas exploration. It provides empirical evidence showing that in the early stages

of an industry where exploration and experimentation is essential, mandatory information sharing

is likely to improve the efficiency of resource allocation and industry wide production outcomes.

The article also provides a theoretical framework seeking to explain the mechanism through which

information disclosure affects firms’ decisions while at the same time generating predictions that can

be empirically verified. The findings of the article provide justifications for the regulatory agency to

collect and disclose production information that otherwise cannot be shared spontaneously among

firms.

Two questions that are fundamental to the shale gas exploration industry are not addressed

in the current research. The first question is how royalty rates are determined. The theoretical

model proposed by this article assumes a reduced form upward sloping supply curve. In practice,

royalty rates and bonus payments are outcomes of the bargaining process between operators and

landowners. An empirical bargaining model is needed to determine the equilibrium royalty rates

before full-fledged structural estimation can be conducted. The second question is whether strategic

concerns arise in a dynamic framework. Theoretically, when information sharing is not one shot

but persistent or periodic, firms will have incentives to strategically pause their decision making in

return for extra information. These two questions are important in that they are directly related

to the measurement of the welfare consequence of the production information disclosure and how

utility gains or losses are distributed between operators and landowners. Answer these questions

are left for further research.
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Figure 1: Major Shale Plays in the Lower 48 States

Source: EIA. Link: http://www.eia.gov/oil_gas/rpd/shale_gas.pdf
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Figure 2: U.S. Dry Natural Gas Production by Sources

Note: the data is obtained from the Annual Energy Outlook 2016 published by EIA, which can be viewed at https://www.eia.gov/outlooks/

archive/aeo16/MT_naturalgas.cfm#natgasprod_exp. The regions, from below to above, are “Shale gas and tight oil plays”, “Tight gas”, “Coal
bed methane”, “Lower 48 offshore”, “Alaska”, and “Other”, respectively. The horizontal axis measures the years. The vertical axis measure the
production quantities in trillion cubic feet.
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Figure 3: The Production of The Major Shale Gas Plays in January 2016

Note: the data is obtained from the Natural Gas Weekly Update, released by EIA on March 24,
2016, which can be viewed at http://www.eia.gov/naturalgas/weekly/archive/2016/03_24/

index.cfm. The figure is based on the U.S. shale gas production in January 2016.
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Figure 4: The Structure Map of the Marcellus Formation

Source: EIA. Link: https://www.eia.gov/maps/pdf/marcellus-upd.pdf
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Figure 5: Daily Natural Gas Gross Withdraws and Shale Gas Production in Pennsylvania (2007 - 2014)

Note: the data is obtained from EIA. The links are https://www.eia.gov/dnav/ng/hist/n9010pa2A.htm and http://www.eia.gov/dnav/

ng/hist/res_epg0_r5302_spa_bcfa.htm. The horizontal axis measures the years. The vertical axis measures the mean daily production
quantities of each year. The unit is Billion cubic feet per day.
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Figure 6: Comparison between Vertical and Horizontal Well Pads

(a) Vertical Well Pads (b) Horizontal Well Pads
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Figure 7: Annual Natural Gas Well Starts in Pennsylvania (2007 - 2014)

Note: the data is obtained from the PADEP. The link is http://www.dep.pa.gov/DataandTools/Reports/Oil%20and%20Gas%20Reports/
Pages/default.aspx#.Vye1useUpg0. The figure measures the newly drilled wells in each year from 2007 to 2014.
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Figure 8: Moran’s I for Municipality Level Royalty Rate Based on Different Neighborhood Defining Distances

Note: the data is obtained from Enverus. The average royalty rate of a municipality weighted by the acreages of the leases is used to
calculate the Moran’s I. The solid curve stands for the expected Moran’s I for the different values of neighborhood defining distance. The
lower dashed curve and the upper dotted curve represent the 95% confidence intervals. The dotted-dashed curve at the top of the figure
illustrates the observed values of the Moran’s I.
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Figure 9: Moran’s I for Municipality Level Productivity Based on Different Neighborhood Defining Distances

Note: the data is obtained from the PADEP. The solid curve stands for the expected Moran’s I for the different values of neighborhood
defining distance. The lower dashed curve and the upper dotted curve represent the 95% confidence intervals. The dotted-dashed curve
at the top of the figure illustrates the observed values of the Moran’s I.
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Figure 10: Horizontal Well Productivity Histogram of Production Report 1, Report 5, and Report 9

(a) Productivity Histogram of Report 1 and Report 5 (b) Productivity Histogram of Report 5 and Report 9

Note: the data is obtained from the PADEP. The lower histogram of Figure ?? is based on the horizontal wells in report 5 but not in report 1, whereas the upper
diagram of Figure ?? is based on the entire set of horizontal wells in report 5. The lower histogram of Figure ?? is based on the horizontal wells in report 9 but
not in report 5
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Figure 11: Monthly Incremental Lease in PA (Log Form) and Natural Gas Price (January 2007 - December 2014)

Note: the price data is obtained from EIA. The link is https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm. The lease data is obtained
from Enverus. The solid curve measures the logarithm of the lease acreages granted in each month in Pennsylvania. The dashed curve
measures the natural gas spot price at the Henry Hub. The unit is dollar per thousand cubic feet.

42

https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm


Figure 12: Plot of Royalty Rate against Productivity Prior and Post to The Production Information Disclosure

Note: the figure plots the acreage weighted average royalty rate against the average log daily production of shale gas for each municipality.
The royalty rate data is obtained from Enverus. The productivity data is obtained from the PADEP. The unit of productivity is thousand
cubic feet per day. The average log daily production is calculated using the shale gas production from January 2014 to June 2014. The
royalty rates of the red dots are averaged over the leases taken prior to the production information disclosure, and the royalty rates of the
blue dots are averaged over the leases taken post to the production information disclosure.
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Figure 13: Plot of The Yearly Coefficient Estimates of Productivity in Equation (3)

Note: the regression equation is Royaltyj,t = β0 + β1,tProd
1
j + βt + εj,t. The coefficient of productivity in 2007 is estimated to be

-0.0012 with a standard error of 0.0027. The solid line in the plot connects the coefficient estimates of the interacting variables between
productivity and the year fixed effects. The values of the round dots, therefore, represent the change of the estimates of productivity’s
coefficient in the corresponding years relative to the estimate of productivity’s coefficient in 2007. The dashed curves represent the upper
and lower bounds of the 95% confidence intervals of the coefficient estimates.
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Figure 14: Simulation Results for Different Royalty Cost Functions

(a) Mean No. of Operators, r(x) = x/N (b) Mean Royalty Rate, r(x) = x/N

(c) Mean No. of Operators, r(x) = 1− 1/(x+ 1) (d) Mean Royalty Rate, r(x) = 1− 1/(x+ 1)

(e) Mean No. of Operators, r(x) = x2/N2 (f) Mean Royalty Rate, r(x) = x2/N2

Note: this set of figures illustrates the simulation results of the Bayesian learning process in the theoretical model
based on different royalty cost function. The true potentials are Q1 = 1, Q2 = 0. The number of operators N is 50.
The common belief Pr(si = j|Qj = 1) is set to be 3/5 for each operator i and location j. The number of experiments
is 10,000. The horizontal axes measure the prior beliefs that Q1 = 1. Figures ?? and ?? are the mean numbers of
operators and the mean royalty rates at the two locations for different prior beliefs based on the linear royalty cost
function. Figures ?? and ?? are the same plots based on the reciprocal royalty rate function. Figures ?? and ?? are
the plots based on the quadratic royalty rate function.

45



Figure 15: Coefficient Estimates of The Signal Indicator in Equation (26) and (27) Based on Different Prior Beliefs

Note: the coefficient estimate for each prior belief is obtained using the simulated sample based on the linear royalty cost function
r(x) = x/N , where N is set to be 50. Each sample consists of 10,000 experiments in which 50 operators sequentially choose their lease
investment locations.
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Figure 16: Coefficient Estimates of Equation (26) and (27) Based on Different Prior Beliefs

(a) Coefficient Estimates of The No. of Investors Based on Different Prior Beliefs

(b) Coefficient Estimates of The Position in Sequence based on Different Prior Beliefs

Note: the coefficient estimate for each prior belief is obtained using the simulated sample based on the linear royalty
cost function r(x) = x/N , where N is set to be 50. Each sample consists of 10,000 experiments in which 50

operators sequentially choose their lease investment locations.
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Table 1: No. of Unconventional Permits Issued from Jan 2007 to Dec 2014

Operator No. of Uncon. Permits Accumulated Percentage

Chesapeake 3062 16.72%

Range Resources 1772 26.40%

SWEPI 1317 33.58%

EQT Production 1180 40.03%

Talisman 1116 46.12%

Operators with 100 - 999 Uncon. Permits (22) 8605 93.10%

Operators with 10 - 99 Uncon. Permits (31) 1105 99.13%

Total No. of Uncon. Permits 18316 100.00%

Note: The permit data is acquired from the PADEP. There are 390 operators receiving at least one drilling permit from
Jan 2007 to Dec 2014, among which 107 received at least one unconventional permit. The percentage in the third column
is taken with respect to the total number of unconventional permits.
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Table 2: Summary Statistics of The Selected Lease Sample

Year No. of Leases Ave. Acres Ave. Term (M) Ave. Royalty

2007 5524 70.03 66.07 12.56%

2008 20700 37.39 63.86 14.26%

2009 14167 25.17 60.35 15.53%

2010 17358 22.16 60.57 16.31%

2011 9355 22.97 60.54 15.17%

2012 4668 23.39 62.44 16.73%

2013 7216 29.61 59.50 14.73%

2014 11253 17.68 64.16 14.43%

Note: The lease data is obtained from Enverus.. Operators receiving fewer than
10 unconventional permits between January 2007 and December 2014 are dropped.
Duplicated observations due to multiple grantors and subplots are eliminated using
the algorithm described in the Data section. For leases with both the original con-
tracts and the lease memos, only the original contracts are kept. The average royalty
rates in the fifth column are taken over the observed values given by the original
contracts and are weighted by acreage.
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Table 3: The Release Time of and The Periods Covered by The Production Reports

Report No. Release Time Period Covered

1 Nov 2010 07/2009 – 06/2010

2 Feb 2011 07/2010 – 12/2010

3 Aug 2011 01/2011 – 06/2011

4 Feb 2012 07/2011 – 12/2011

5 Aug 2012 01/2012 – 06/2012

6 Feb 2013 07/2012 – 12/2012

7 Aug 2013 01/2013 – 06/2013

8 Feb 2014 07/2013 – 12/2013

9 Aug 2014 01/2014 – 06/2014

Note: The contents of the table is based on the production
reports collected from the PADEP. The first report covers the
production of twelve months from July 2009 to June 2010.
Each other report covers the production of six months. The
reports are assumed to be released on the first days of the
months.
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Table 4: Summary Statistics of The Production Data

Report No. of Active Wells Mean Producing Days Mean Quant./Day (MMcf.) S.D. of Quant./Day

Horizonal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

1 438 411 181.55 304.17 2.74 0.21 2.17 0.33

2 768 451 133.18 167.83 2.81 0.15 2.33 0.23

3 1180 463 139.22 166.18 2.79 0.12 2.49 0.17

4 1750 507 140.36 159.83 2.72 0.14 2.26 0.68

5 2376 506 151.05 166.44 2.64 0.14 2.40 0.53

6 3036 520 158.73 155.89 2.56 0.16 2.53 0.53

7 3694 521 157.37 165.12 2.71 0.18 2.91 0.71

8 4369 565 161.26 153.19 2.67 0.27 3.18 1.22

9 4862 541 160.76 164.64 2.69 0.28 2.96 1.08

Note: the data is obtained from the PADEP. The maximum number of producing days is 365 for the first report, and 184 (or 183)
for the other reports. The unit of the daily production quantity is million cubic feet (MMcf.)
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Table 5: Summary Statistics of The Productivity Histograms in Figure ??

Figure ?? Figure ??

Upper Lower Upper Lower

Mean 7.54 7.67 7.50 7.93

Median 7.62 7.70 7.55 7.96

Note: the lower diagram of Figure ?? is based on
the horizontal wells in production report 5 but not in
report 1, whereas the upper diagram of Figure ?? is
based on the entire set of horizontal wells in report 5.
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Table 6: Estimation Results of The Model Defined by Equation (2)

Coef. S.E.

Const. 0.1152 0.0082∗∗∗

Prod9j 0.0037 0.0011∗∗

Dt -0.0285 0.0129∗

Prod9j ×Dt 0.0058 0.0017∗∗∗

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01
‘∗’, 0.05 ‘.’
Note: Prod9j represents the average log

daily production (Mcf./d) of municipality
j calculated using the ninth production re-
port. Dt is the information disclosure in-
dicator variable that is equal to 0 if period
t is “before disclosure” and 1 if period t is
“post disclosure”.

Table 7: Estimation Results of The Model Defined by Equation (4)

Coef. SE.

Prod9j 0.0047 0.0011∗∗∗

Sj × Prod9j −1.37× 10−5 0.0004

Dt × Prod9j 0.0009 0.0006

(Sj ×Dt)× Prod9j 0.0014 0.0006∗∗∗

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’
Note: Prod9j represents the average log daily production

(Mcf./d) of municipality j calculated using the ninth pro-
duction report. Dt is the information disclosure indicator
variable that is equal to 0 if period t is “before disclosure”
and 1 if period t is “post disclosure”. Sj is the municipality
type indicator variable that takes value 1 if municipality
j is classified as shale gas oriented and 0 otherwise.
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Table 8: Estimation Results of The Empirical Model Defined by Equations (6) and (7)

Baseline W/O FE Linear Model

Coef. S.E. Coef. S.E. Coef. S.E.

Own Recent Acreage 0.593 0.007∗∗∗ 0.660 0.007∗∗∗ 0.116 0.001∗∗∗

Peer’s Recent Acreage -0.003 0.004 -0.015 0.004∗∗∗ -0.000 0.000

Accumulated Acreage 0.029 0.001∗∗∗ 0.029 0.001∗∗∗ 0.000 0.000∗∗∗

Productivity 23.591 0.924∗∗∗ 24.899 0.908∗∗∗ 0.079 0.022∗∗∗

Productivity × Own Recent Acreage 0.007 0.002∗∗∗ 0.009 0.002∗∗∗ -0.006 0.000∗∗∗

Productivity × Peer’s Recent Acreage -0.000 0.001 0.000 0.001 0.000 0.000

Productivity × Accumulated Acreage -0.001 0.000∗∗∗ -0.001 0.000∗∗∗ -0.000 0.000

Royalty Rate 631.163 49.983∗∗∗ 651.460 48.084∗∗∗ 1.054 1.920

Natural Gas Price 25.163 1.116∗∗∗ 24.988 1.055∗∗∗ 0.455 0.032∗∗∗

Public 173.033 16.054∗∗∗ 150.768 4.208∗∗∗ 0.876 0.378∗

Population 0.001 0.001∗∗ 0.002 0.001∗∗ -0.000 0.000

Land Area -0.000 0.000 -0.000 0.000∗ 0.000 0.000∗∗∗

Month -3.904 0.128∗∗∗ -3.699 0.119∗∗∗ -0.027 0.003∗∗∗

Operator FE Yes No Yes

No. of Observations 1,057,741 1,057,741 1,057,741

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’
Note: Own Recent Acreage is the lease acreages operator i obtains at municipality j in the past three months. Peer’s Recent

Acreage is the lease acreages operators other than i obtain at municipality j in the past three months. Accumulated Acreage is
the accumulated lease acreages that have been taken at municipality j up to month t − 4. Productivity is the average log daily
production of the horizontal wells in the neighboring municipalities, calculated using the latest production report available in month
t. The value of Productivity is zero when t < 47.
The second and the third columns show the coefficient estimates and the standard errors for the baseline latent variable model.

The fourth and the fifth columns show the estimation results for the same model without the operator fixed effects. The last two
columns show the estimation results for a linear model.
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Table 9: Robustness Test Based on Different Window Widths

2007 – 2014 2008 – 2013 2009 – 2012 2010 – 2011

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Own Recent Acreage 0.660 0.007∗∗∗ 0.660 0.008∗∗∗ 0.631 0.010∗∗∗ 0.553 0.012∗∗∗

Peer’s Recent Acreage -0.015 0.004∗∗∗ -0.021 0.005∗∗∗ -0.088 0.010∗∗∗ -0.139 0.016∗∗∗

Accumulated Acreage 0.029 0.001∗∗∗ 0.029 0.001∗∗∗ 0.026 0.001∗∗∗ 0.022 0.001∗∗∗

Productivity 24.899 0.908∗∗∗ 21.045 1.031∗∗∗ 12.510 1.204∗∗∗ 12.587 1.611∗∗∗

Productivity × Own Recent Acreage 0.009 0.002∗∗∗ -0.006 0.002∗ 0.037 0.004∗∗∗ 0.028 0.005∗∗∗

Productivity × Peer’s Recent Acreage 0.000 0.001 -0.000 0.001 0.004 0.004 0.020 0.004∗∗∗

Productivity × Accumulated Acreage -0.001 0.000∗∗∗ -0.001 0.000∗∗∗ -0.001 0.000∗∗∗ -0.001 0.000∗∗∗

Royalty Rate 651.460 48.084∗∗∗ 915.313 49.872∗∗∗ 1256.381 56.864∗∗∗ 3308.702 160.854∗∗∗

Natural Gas Price 24.988 1.055∗∗∗ 22.655 1.175∗∗∗ 10.407 3.352∗∗ -2.667 6.910

Public 150.768 4.208∗∗∗ 148.485 4.515∗∗∗ 165.648 4.535∗∗∗ 135.818 7.325∗∗∗

Population 0.002 0.001∗∗ 0.001 0.001∗ 0.001 0.001 0.001 0.001

Land Area -0.000 0.000∗ -0.000 0.000 -0.000 0.000∗∗∗ 0.000 0.000

Month -3.699 0.119∗∗∗ -4.151 0.170∗∗∗ -5.204 0.248∗∗∗ -9.636 0.688∗∗∗

Operator FE No No No No

No. of Observations 1,057,741 847,069 567,427 299,698

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’
Note: the second and the third column show the estimation results using the full lease sample from 2007 to 2014. The fourth and the fifth column are the estimation

results based on a narrower window width from 2008 to 2013. The sixth and the seventh column are the estimation results based on an even narrower sample from
2009 to 2012. The last two columns are the estimation results for the narrowest window width from 2009 to 2012. For all the samples, the production information is
disclosed in the middle of the window width.The operator fixed effects are dropped for the estimation using all the four samples.
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Table 10: Test of The Virtual Effect of The Production Information If Disclosed at The End of 2012

Original Sample Artificial Sample

Coef. S.E. Coef. S.E.

Own Recent Acreage 0.660 0.007∗∗∗ 0.768 0.013∗∗∗

Peer’s Recent Acreage -0.015 0.004∗∗∗ -0.016 0.009

Accumulated Acreage 0.029 0.001∗∗∗ 0.020 0.001∗∗∗

Productivity 24.899 0.908∗∗∗ 27.063 1.001∗∗∗

Productivity × Own Recent Acreage 0.009 0.002∗∗∗ -0.031 0.002

Productivity × Peer’s Recent Acreage 0.000 0.001 0.001 0.001

Productivity × Accumulated Acreage -0.001 0.000∗∗∗ -0.001 0.000∗∗∗

Royalty Rate 651.460 48.084∗∗∗ 211.932 51.690∗∗∗

Natural Gas Price 24.988 1.055∗∗∗ 0.737 2.960

Public 150.768 4.208∗∗∗ 107.591 4.722∗∗∗

Population 0.002 0.001∗∗ 0.007 0.001∗∗∗

Land Area -0.000 0.000∗∗∗ -0.001 0.000∗∗∗

Month -3.699 0.119∗∗∗ -3.957 0.211∗∗∗

Operator FE No No

No. of Observations 1,057,741 592,507

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’
Note: the artificial sample is created by removing the observations from 2007 to 2010 from the original

sample, and changing the values of productivity in 2011 and 2012 to 0.
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Table 11: Estimation Results of The Empirical Model Defined by Equation (11)

Log-linear W/ IV Log-linear W/ IV Log-linear W/O IV

Coef. S.E. Coef. S.E. Coef. S.E.

Own Recent Acreage 0.431 0.000∗∗∗ 0.434 0.000∗∗∗ 0.428 0.000∗∗∗

Peer’s Recent Acreage 0.005 0.000∗∗∗ 0.004 0.000∗∗∗ -0.000 0.000∗∗∗

Accumulated Acreage 0.007 0.000∗∗∗ 0.007 0.000∗∗∗ 0.003 0.000∗∗∗

Productivity 0.003 0.000∗∗∗ 0.003 0.000∗∗∗ 0.001 0.000∗∗∗

Productivity × Own Recent Acreage -0.000 0.000 -0.000 0.000 0.000 0.000

Productivity × Peer’s Recent Acreage -0.000 0.000∗∗∗ -0.000 0.000∗∗∗ 0.000 0.000

Productivity × Accumulated Acreage 0.000 0.000∗∗∗ 0.000 0.000∗∗∗ -0.000 0.000

Royalty Rate -3.951 0.322∗∗∗ -4.012 0.324∗∗∗ 0.023 0.014

Natural Gas Price 0.000 0.000 -0.000 0.000 0.005 0.000∗∗∗

Public 0.013 0.003∗∗∗ 0.011 0.000∗∗∗ 0.010 0.003∗

Population -0.000 0.000∗∗∗ -0.000 0.000∗∗∗ 0.000 0.000∗∗∗

Land Area -0.000 0.000∗∗∗ -0.000 0.000∗∗∗ 0.000 0.000

Month -0.000 0.000∗∗∗ -0.000 0.000∗∗∗ -0.000 0.000∗∗∗

Operator FE Yes No Yes

No. of Observations 1,057,741 1,057,741 1,057,741

Adjusted R2 0.3385 0.3362 0.3841

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’
Note: Own Recent Acreage is the logarithm of the lease acreages operator i obtains at municipality j in the past three months.

Peer’s Recent Acreage is the logarithm of the lease acreages operators other than i obtain at municipality j in the past three months.
Accumulated Acreage is the logarithm of the accumulated lease acreages that have been taken at municipality j up to month t− 4.
Productivity is the average log daily production of the horizontal wells in the neighboring municipalities, calculated using the latest
production report available in month t. The value of Productivity is zero when t < 47.
The second and the third columns show the coefficient estimates and the standard errors for the log-linear model with fixed effects,

using per capita income of the county where the municipality locates in the same year the lease is granted as the instrument for
royalty rate. The fourth and the fifth columns show the estimation results for the same model without the operator fixed effects.
The last two columns show the estimation results for the same model without instrumenting for royalty rate.
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